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A METHOD OF MAKING IMPEDANCE MEASUREMENTS OF THE VISCOELASTIC PROPERTIES 
OF A MEDIUM BY OSCILLATING PLATES AND SHELLS* 

B.R. VAINBERG and V.N. KRUTIN 

A method of measuring the viscoelastic properties of a homogeneous medium 
bounded by plates and shells is presented, based on processing observations 
of arbitraryoscillations. 

The impedance measurements an attempt is usually made to use the simplest forms of oscil- 
lations and obtain one-dimensional motion. However if the region in which oscillations are 
excited is of limited size this gives rise to difficulties due to diffraction or edge effects, 
and the excitation of modes of oscillation that are not used in the measurements. An increase 
in the dimensions of the excitation region in order to reduce the influence of these effects 
usually requires an increase in the stiffness, and hence also in the mass of the probes, which 
reduces the measurement sensitivity, and makes them virtually impossible at high frequencies. 

A method is propsoed in the present paper of processing the observed arbitrary oscilla- 
tions of plates and shells, which enable us to obtain the same results and formulas for the 
simplest modes of oscillation including one-dimensional modes. This is also feasible in cases 
for which this realization is practically impossible, which enables the range of impedance 
frequency measurements to be extended. The viscoelastic properties of the medium are deter- 
mined in terms of displacements and stresses on the plate or shell surfaces for arbitrarily 
small oscillations. 

Let the oscillations of a homogeneous plate or shell with bounding surfaces S, and S, be 
used for impedance measurements, where the surface St is in contact with the viscoelastic 
medium being investigated. The oscillations observed on the surface S1 and their properties 
are used to determine the properties of the medium. Such plates or shells can be, for example, 
the walls of apparatus, autoclaves, containers, or pipelines, the values of underground struct- 

ures, or natural objects. We shall restrict our consideration to the simplest configurations 
of plates and shells. 

The equations of small oscillations of a plate (shell) and medium have the form /l/ 

. k,:* grad div u,- x1-’ rot rot u, + uj = 0 (1) 

kj = o/c~, Xj = OlVj, cj’)/(hj + &j)/pjt vj= f/lrjlpj 

*Prikl_Matem,Mekhan.,48,1,92-97,1984 
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When i=1, the equation is considered in the region occupied by the plate or shell, and 
when j = 2 in the region occupied by the medium, uf are the complex amplitudes or spectral 
densities of the displacement vectors (subsequently called displacements), kj and XJ are the 
wave numbers for plane longitudinal and transverse waves, respectively, that propagateatcom- 
plex velocities ci and Vj dependent on the frequency, hj and P, are complex Lam& coefficients, 
dependent on frequency, PJ are the densities of the media,@ iS the angular frequency, and the 
multiplier exp(-i@t) is everywhere omitted. 

The vector of stresses on a certain surface S with unit normala is expressed in terms 
of the displacement vectors Uj by the formula /2/ 

&) = 2pj $$. + hjndivu(j) fpj[n X rCGU(j)] (2) 

On the intexface Sz of the plate or shell and the medium all components of the displace- 
ment and stress vectors are identical 

u(l) (S,) = u(") (S,), 8) (S,) = 6) (S,) 
(3) 

Since hi and & are not real, then, when the medium is unbounded, the conditions of 
damping at infinity 

1/Z12fC@ +zsz --, M? 1 u(j) 1 + 0 (4) 

are assumed to be satisfied. 
If some of the constants hj and & are taken to be real, the damping condition is replaced 

by the principle of limit absorption 13, 41. 
We will illustrate the basic idea of this paper using the simplest example of the deter- 

mination of the characteristics of a homogeneous viscoelastic half-space (z>O) in contact 
with a plane viscoplastic layer (--h <2 < 0). 

we shall further need three simple exact solutions of problem (l)-_(3) using which we shall 
illustrate the essential features of the proposed system of measurements. These solutions 
will be called the reference oscillat+ons. 

Normal uniform oscillations (independent of x and y) of the medium and layer are defined 
by the formulas 

u(j) = {O,, 0, w(j)} 

wet> -_ A f cos kg -+ i $$ sin ksz) , 
(5) 

td*) = Ae*; A = A (of 

From this, using (2)) we obtain 

o(l) (z-h = (0, 0, a), u = WA (plc, sin k,h -I- ip,c,cos klh) (6) 

For tangential uniform os'cillations of the medium and layer along the2 axis we have 

u(j) = {u(j), 0, 0) (71 

~(1) = A(cos xlz + i E sin qz) , u(*) = A&m; A = A (co) 

a@) lr-,, = (r, 0, 0), T = OA (pIvl sin x,k + Spg, ccs x&) (81 

For uniform torsional oscillations (the angle of rotation @is independent of X and y) 
of the.medium and layer about the S axis we have 

cp’s) = Ae*w; A - A (a) 

at’) h-h = (y, -I, 0) M, M = WA (plq sin x,h + ip,ui x sin x&) 

(9) 

(10) 

If these simple motions can be realised, by measuring on the surface of observation z = 
dh the specific impedance 

where v(n is the velocity vector, it should be possible, for known characteristics of the 
plate, to determine the properties.-of the medium. 

Let zz, zz and zz be the specific impedances of the three reference oscillations consid- 
ered above. Then from formulas (5) --fll) we obtain 
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(l-2) 

(13) 

St is not possible to realize the simple forms of socillations considered, but there is 
no need for this. Indeed, let (U(‘j, U(*)) be an arbitrary , motion as complicated as desired 
of the system, and suppose that on the observation surface its displacement u (or velocity) 
and stress Z are recorded. Since U(l) and U@) satisfy (1) as well as the boundary condi- 
tions (3) and (4), it follows from Green's formula for the solution (UC'), C(2)) and solutions 
(51 and (71, or (9) that 

SS (u(1). Z) dx dy e ,ss, (U, dl)) ax dy 
114) 

2=--h 

where (a, b) is the scalar product of the vectors a and b. 
Substituting here UC') and &) from (5)-(10) and solving the formulas obtained for ~2~2 

and P2v2, we obtain (12) and (13) in which z, is replaced by the following quantities 2%: 

v = -hU, a1 = (0, 0, I), a, = (1,0, Oh as = (-y, 5, 0) 

and it is assumed here that the denominator does not vanish. 
Hence using (121 and (13) with z,, substituted for Z ,, it is possible to determine the 

medium parameters from the results of arbitrary oscillations of the plate. Taking into account 
the natural losses in the elastic plates and when the medium possesses viscosity, the results 
obtained hold without any restrictions. If, however, any of the quantities kf or %J are taken 

as real, for these results to be valid it is necessary that the observed oscillations should 

fall fairly rapidly when 1/z' + y2 + 22-Wx2. It is convenient in particular, to use non-uni- 
form waves that are cylindrically divergent in the plate. 

The case of a 
(13) we have 

In the zeroth 

Formulas (15) 
half-space without 

Let us extend 

approximation we have 

Q&s = 2,. p2v2 52: 22.2 (15) 

holds when investigating the viscoelastic properties of the medium in a 
using a plate. 
this principle to more complicated configurations of shells. Let_(u('), u(‘)) 

be some fairly simple (reference) solution of problem (11, (3), (4), and let (s(r). @) be the 
corresponding stress: V and x are the velocity and stress on the observation surface S, for 
arbitrary oscillations of the system. From Green's formula we have 

thin plate, when IO 1x1 is of considerable interest. From (12) and 

- io Ji (u(l), z) dsl = $s (V. a(l)) d& 
( 3 

(16) 

The stress and velocity on the surface s, are connected by the relation d') = -svW, 

where s is the impedance tensor for given reference oscillations. If the reference oscilla- 
tions (u(*), u(m) are determined, it is possible to calculate the dependence of s on the medium 
properties, when the shell characteristics are known. 

In the special case when the reference oscillations are such that 2 = 2, where .z=z 

(Q2,C2,I$)is a function independent of points on the surface sl, we can take the function z 
outside the integral sign on the right-hand side of (16). ffence we have 

Z@*,c*,V2)=Z,~Z=- ss (E, 

6) 
v(l)) d& / $5 (V, v”‘) dS, 

WI) 

(17) 

Thus, having determined the simplest solution (u(l), u(2)) we find for it the dependence of 

the impedance on the medium parameters 2 = 2 (Q2. es;, 9). Then having processed the results of 

observations of arbitrary oscillations on the%.~rface S, (for which +he denominator in the 
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second formula of (17) is non-zero and this condition is assumed satisfied everywhere below) 
by the second formula (171, we determine the propertiesofthe medium from the first of equa- 
tions (17). 

Let us use the principles described above to find the properties of a homogeneous visco- 
elastic medium contained in a cylindrical pipe. In cylindrical coordinates r, 0,~ the dis-. 
placement and stress vectors are represented in the form e(j)=(dj), t+,(j), ,zW) nrW = {&), og(J), a,(J)). , 

Using as reference oscillations the axisymmetric radial oscillations of the shell (a< 
r<R) and medium (rd a) in the form u@ = (t+(j), 0, 0). we obtain the formula 

(18) 

aj = kja. R, = klR, aj = VjlCj, bj = xja, B1 = x,R 

where (J,,(z) and N,(z) are Bessel and Neumann functions of order n. Here, according to (17) 

z= - ss 
(=4 

Z?(R)dBdz/ 1s Vr(R)d’3dz 

(l=R) 

where V, .and 2, are the radial velocity and stress components on the observation surface 
r=R for arbitrary oscillations of the shell containing the medium. 

If axial axisymmetric oscillations have been selected as the shell and medium reference 
oscillations of the form u (j)=(O,O,u,(j)(r)), we obtain for the viscoelastic properties of the 
medium the formula 

(19) 

For a thin shell (I.&- bile 1) this formula takes the form 
psmJ, W/Jo @a) = - fz 

In many practical cases we have )bsl>l andthespecific shear impedance of the medium 
is 

By selecting the torsional axisymmetric reference oscillations in the form&)= {O,u~O. 
0), we obtain a formula which is similar to (19), when the functions JI, Ja, J+‘I,Ns are substit- 
uted for Jo, J,,N,.N,, and Iz,VZ for Za, Ve, respectively. Hence for a thin shell we can 
write 

pnurJa (br)/J,(ba) = - 12 

In the asymptotic case when )&lpi we obtain (20). 
By selecting one-dimensional spherically symmetric radial reference oscillations s(j)= 

(@'(r)* O,O) for a spherical viscoelastic shell (a<r<W, investigated in the region rca, 
we obtain,(in spherical coordinates r,& cp), the following restults: 

~+4~~9~1-~)=1~~~~~~~~~~1.i~~~~~~~~~i" 

z=_ ~j'I,(R)sia6d~d~ 

jj VI(R).sinB& dcp 
1 E= gRl+W 

where 

are Bessel and Neumann spherical functions. 
For torsional reference oscillations, symmetric about the diameter, of a system of form 

s(j) = (0, 0, I@ (r)sine) , we have 
:;,$k:; +3(~-~)=l~~~~~~,l'l~~~~~~~~r 

I 
z= _ jJ L,(R)sin’@dedv tz 

~~V,(R)sin’8dEIdp ’ ’ =h,B1+3 
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More complex oscillations of systems may be used as references, for which it is possible 
to determine the viscoelastic properties and its density by a combination of calculation forn- 
ulas. 

Similarly, it is possible using (171, to obtain expressions for the medium characteristics, 
when the medium surrounds the shell, and the oscillations are recorded on its inner surface. 

The proposed principle can also be extended to some other shell forms. 
For the practical realization of the proposed method it is necessary to know the displace- 

ments and stresses on the observation surface S, and process the data obtained using the 
formulas proposed above. 

Analog and discrete systems of three-dimensional processing have found wide application 
in acoustic measurements 15, 7/. An example of the use of a discrete system is the set of 
transducersofdisplacement (velocity , acceleration) on the surface of a technological apparatus 
shell (the acceptable pitch transducers is determined using Kotel'nikov's theorem). ’ The 
displacement pickup (velocities, accelerations) and stresses (pickup elements of strain gauge) 
may alternate anda concurrentmeasurement of stresses and displacements does not'cause any 
difficulties. Further data processing can be carried out on simple computing equipment. 

Since the proposed method does not require the oscillations to be of any specific form, 
it is possible to excite the shell by a priori specified stresses (e.g., application of a 
point force) and measure only displacements. 

In the analog form of the measurement system it is possible to use electromechanical 
transducers located around the shell and performing direct integration in analog form of shell 
displacements by the summation of emfs, currents, charges, magnetic fluxes, etc. 

Note that since the form of the oscillations is arbitrary, it is possible to excite in 
the shell oscillations that decay rapidly with distance (non-uniform waves), while at the 
same time reducing the observation surface. 
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REPRESENTATION IN TERMSOF p-ANALYTICFUNCTIONS OF THE GENERAL SOLUTION 
OF EQUATIONS OF THE THEORY OF ELASTICITY OF A TRANSVERSELY ISOTROPIC BODY* 

O.G. GOMAN 

A general solution is given for the equations of the theory of elasticity 
in terms of p-analytic functions for a transversely isotropic body in a 
non-axisymmetric stress state. This representation was obtained in /l/ 
for an isotropic medium. For the transport medium a similar representation 
is known only for the axisymmetric problem /2--41. 

1. We shall call the function 

f(G r)=p(z, r) + iQ(z, r)s( ;)a 

*Prikl.Matem.Hekhan.,48,1,98-104,1984 


